Investigation of the potential for mineral carbonation of South African PGM tailings

1J. Vogeli, 2D.L. Reid, 1M. Becker, 1J. Broadhurst, 1J-P. Franzidis

- 1Minerals to Metals Signature Theme, UCT
- 2Department of Geological Sciences, UCT
Background

- Rising CO$_2$ levels increase rate of global warming
- SA generates 93% electricity coal combustion
- 420 million t CO$_2$ & volumes of industrial wastes

(Cloete, 2009)

Adapted from Koonin (2008)
Natural Carbonation and CCS Strategies

• Mimicking natural weathering:

$\text{(Ca,Mg)}\text{SiO}_3 \text{ (s)} + \text{CO}_2 \text{ (g)} \rightarrow \text{(Ca,Mg)}\text{CO}_3 \text{ (s)} + \text{SiO}_2 \text{ (s)}$

• Not easily reversible & products are benign in nature

(Lackner, 1995)
Objectives of Study

• Characterisation of Merensky tailings from four PGM operations along the western limb of the BIC

• Develop a ranking scheme of theoretical carbonation potential

• Estimate maximum theoretical sequestration capacity of the PGM industry in SA per annum

• Validate the ranking scheme through kinetic testing
<table>
<thead>
<tr>
<th>Mining Operation</th>
<th>Northam</th>
<th>BRPM</th>
<th>Impala</th>
<th>Lonmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineralogy</td>
<td>Harzburgitic</td>
<td>Pyroxenetic</td>
<td>Pyroxenetic</td>
<td>Pyroxenetic</td>
</tr>
<tr>
<td>R_{CO2}</td>
<td>2.6</td>
<td>3.9</td>
<td>3.9</td>
<td>3.7</td>
</tr>
<tr>
<td>Capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonnage of Merensky Tailings pa</td>
<td>1002 kt</td>
<td>1049 kt</td>
<td>5385 kt</td>
<td>2636 kt</td>
</tr>
<tr>
<td>Carbonation Capacity kt CO$_2$ pa</td>
<td>388</td>
<td>270</td>
<td>1372</td>
<td>716</td>
</tr>
<tr>
<td>Distance from CO$_2$ Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance from Secunda</td>
<td>300 km</td>
<td>280 km</td>
<td>250 km</td>
<td>215 km</td>
</tr>
</tbody>
</table>

Rank

R_{CO2} = Tonnage of tailings required to sequester 1 ton of CO$_2$ (g)

![Inkaba yeAfrica]
Kinetic Analysis

• Indirect two step “pH swing”

• Leach carried out on 10g PGM tailings in 500mL 2M HCl at T=70ºC for 8 hours

• Filtered, pH increased to 9 by addition 5M NaOH

• Carbonated at pH 9, CO$_2$ gas flow rate of 1L/min, T=20ºC
Acid Leach: Mg

- Olivine & serpentine are most reactive
- Talc & chlorite are least reactive
- Increased Mg deportment in olivine & serpentine phases results in a greater X_{Mg} %
• Plagioclase is the most reactive
• BRPM and Impala behave similarly as do Northam & Lonmin
• Increased deportment of Ca in plagioclase results in a greater X_{Ca} %
Carbonation

Acid test for carbonates

Diffractogram of the carbonated precipitate

Leach:

\[
\begin{aligned}
HCl + \frac{1}{6}Mg_3Si_2O_5(OH)_4 &\rightarrow \frac{1}{2}Mg^{2+} + Cl^- \\
&+ \frac{1}{3}SiO_2 + \frac{5}{6}H_2O
\end{aligned}
\]

Carbonation:

\[
\begin{aligned}
5MgCl_2(aq) + 10NaOH(aq) &\rightarrow 4CO_2(g) + 10NaCl(aq) \\
&+ Mg_5(OH)_2(CO_3)_4 \cdot 4H_2O(s)
\end{aligned}
\]
Conclusion

• Merensky PGM tailings have been carbonated via an indirect two-stage “pH swing” method

• Mild leach conditions - reacted mineral capacity is lower than stoichiometric capacity

• The difference in extraction % can be linked to mineralogy - Mg leach

• Leaching efficiencies (Mg) for BRPM & Lonmin may be improved with longer reaction times; Northam & Impala may be improved by “harsher” leach conditions
Acknowledgements

National Research Foundation
www.nrf.ac.za

Minerals to Metals Initiative
www.mineralstometals.uct.ac.za

Inkaba yeAfrica
www.inkaba.org
Theoretical Carbonation Capacity of PGM Industry

Theoretical Carbonation Capacities Per Annum

- Total CO₂ capacity **13.9 Mtpa** accounts for **43%** of **32 Mtpa** of CO₂ produced by synthetic fuels industry SA