Denudation rates and geomorphic evolution of the Cape Mountains determined by the use of in-situ produced cosmogenic 10Be

T. Scharf1,2, A. Codilean3, M. de Wit4, J. Jansen5, P. Kubik6

1. Shango Solutions, South Africa, taryn@shango.co.za
2. AEON, Nelson Mandela Metropolitan University, South Africa
3. Earth Surface Geochemistry, GFZ, Potsdam, Germany, codilean@gfz-potsdam.de
4. AEON, Nelson Mandela Metropolitan University, South Africa, maarten.dewit@nmmu.ac.za
5. Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden, jjansen@uow.edu.au
6. Laboratory of Ion Beam Physics, ETH Zurich, Switzerland, kubik@phys.ethz.ch

ABSTRACT

The Cape Mountains of southern Africa are the remnants of an exhumed Permo-Triassic mountain belt, excavated from beneath 2-7 km of material between 80-120 Ma. This ancient passive margin mountain belt is morphologically comparable to present-day active orogens, yet returns some of the lowest 10Be-based denudation rates known. Within the Cape Mountains, slope angles are often in excess of 30° and relief frequently exceeds 1 km, yet 10Be-based catchment-averaged denudation rates vary between 2.32 ± 0.29 m/m.y. and 7.95 ± 0.90 m/m.y. and 10Be-based bedrock denudation rates vary between 1.98 ± 0.23 m/m.y. and 4.61 ± 0.53 m/m.y. We attribute the suppression of denudation rates and long-term maintenance of alpine-like topography within these mountains to the physically robust and chemically inert quartzites that comprise the high-lying backbone of the mountains. The Cape Mountains thus present an exception to the often noted and sometimes merely inferred coupling of tectonics and topography, whilst providing a striking demonstration of the overwhelming control that lithology may exert on landscape evolution.

KEYWORDS: Cape Mountains, denudation rate, cosmogenic nuclide analysis, passive margin